Numerical Stability Analysis of Lattice Boltzmann Equations for Linear Diffusion
نویسنده
چکیده
The lattice Boltzmann equations for the linear diffusion modeling in cases of D2Q5, D2Q7 and D2Q9 lattices are considered. Families of the numerical schemes with the dependence on scalar parameter are introduced. The stability analysis of schemes is performed in parameter space. The stability is studied numerically by von Neumann method. Optimal parameter values for the presented families are defined.
منابع مشابه
Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients
Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...
متن کاملEntropic Lattice Boltzmann Methods
We present a general methodology for constructing lattice Boltzmann models of hydrodynamics with certain desired features of statistical physics and kinetic theory. We show how a methodology of linear programming theory, known as Fourier-Motzkin elimination, provides an important tool for visualizing the state space of lattice Boltzmann algorithms that conserve a given set of moments of the dis...
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملThe effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method
The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...
متن کاملOptimal Stability of Advection-Diffusion Lattice Boltzmann Models with Two Relaxation Times for Positive/Negative Equilibrium
Despite the growing popularity of Lattice Boltzmann schemes for describing multi-dimensional flow and transport governed by non-linear (anisotropic) advectiondiffusion equations, there are very few analytical results on their stability, even for the isotropic linear equation. In this paper, the optimal two-relaxation-time (OTRT) model is defined, along with necessary and sufficient (easy to use...
متن کامل